3.1.96 \(\int \frac {x^2}{\sqrt {a+b x+c x^2} (d-f x^2)} \, dx\) [96]

Optimal. Leaf size=266 \[ -\frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}} \]

[Out]

-arctanh(1/2*(2*c*x+b)/c^(1/2)/(c*x^2+b*x+a)^(1/2))/f/c^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)-2*a*f^(1/2)+x*(2*c*d^
(1/2)-b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f-b*d^(1/2)*f^(1/2))^(1/2))*d^(1/2)/f/(c*d+a*f-b*d^(1/2)*f^(1/2))
^(1/2)+1/2*arctanh(1/2*(b*d^(1/2)+2*a*f^(1/2)+x*(2*c*d^(1/2)+b*f^(1/2)))/(c*x^2+b*x+a)^(1/2)/(c*d+a*f+b*d^(1/2
)*f^(1/2))^(1/2))*d^(1/2)/f/(c*d+a*f+b*d^(1/2)*f^(1/2))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 266, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {1093, 635, 212, 998, 738} \begin {gather*} \frac {\sqrt {d} \tanh ^{-1}\left (\frac {-2 a \sqrt {f}+x \left (2 c \sqrt {d}-b \sqrt {f}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}\right )}{2 f \sqrt {a f+b \left (-\sqrt {d}\right ) \sqrt {f}+c d}}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {2 a \sqrt {f}+x \left (b \sqrt {f}+2 c \sqrt {d}\right )+b \sqrt {d}}{2 \sqrt {a+b x+c x^2} \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}\right )}{2 f \sqrt {a f+b \sqrt {d} \sqrt {f}+c d}}-\frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x^2/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

-(ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^2])]/(Sqrt[c]*f)) + (Sqrt[d]*ArcTanh[(b*Sqrt[d] - 2*a*Sqrt
[f] + (2*c*Sqrt[d] - b*Sqrt[f])*x)/(2*Sqrt[c*d - b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*f*Sqrt[c
*d - b*Sqrt[d]*Sqrt[f] + a*f]) + (Sqrt[d]*ArcTanh[(b*Sqrt[d] + 2*a*Sqrt[f] + (2*c*Sqrt[d] + b*Sqrt[f])*x)/(2*S
qrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f]*Sqrt[a + b*x + c*x^2])])/(2*f*Sqrt[c*d + b*Sqrt[d]*Sqrt[f] + a*f])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 998

Int[1/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[1/2, Int[1/((a - Rt[(
-a)*c, 2]*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[1/2, Int[1/((a + Rt[(-a)*c, 2]*x)*Sqrt[d + e*x + f*x^2]), x
], x] /; FreeQ[{a, c, d, e, f}, x] && NeQ[e^2 - 4*d*f, 0] && PosQ[(-a)*c]

Rule 1093

Int[((A_.) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Dist[
C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[(A*c - a*C)/c, Int[1/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x],
x] /; FreeQ[{a, c, d, e, f, A, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rubi steps

\begin {align*} \int \frac {x^2}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx &=-\frac {\int \frac {1}{\sqrt {a+b x+c x^2}} \, dx}{f}+\frac {d \int \frac {1}{\sqrt {a+b x+c x^2} \left (d-f x^2\right )} \, dx}{f}\\ &=-\frac {2 \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )}{f}+\frac {d \int \frac {1}{\left (d-\sqrt {d} \sqrt {f} x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 f}+\frac {d \int \frac {1}{\left (d+\sqrt {d} \sqrt {f} x\right ) \sqrt {a+b x+c x^2}} \, dx}{2 f}\\ &=-\frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f}-\frac {d \text {Subst}\left (\int \frac {1}{4 c d^2-4 b d^{3/2} \sqrt {f}+4 a d f-x^2} \, dx,x,\frac {-b d+2 a \sqrt {d} \sqrt {f}-\left (2 c d-b \sqrt {d} \sqrt {f}\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f}-\frac {d \text {Subst}\left (\int \frac {1}{4 c d^2+4 b d^{3/2} \sqrt {f}+4 a d f-x^2} \, dx,x,\frac {-b d-2 a \sqrt {d} \sqrt {f}-\left (2 c d+b \sqrt {d} \sqrt {f}\right ) x}{\sqrt {a+b x+c x^2}}\right )}{f}\\ &=-\frac {\tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{\sqrt {c} f}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {b \sqrt {d}-2 a \sqrt {f}+\left (2 c \sqrt {d}-b \sqrt {f}\right ) x}{2 \sqrt {c d-b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f \sqrt {c d-b \sqrt {d} \sqrt {f}+a f}}+\frac {\sqrt {d} \tanh ^{-1}\left (\frac {b \sqrt {d}+2 a \sqrt {f}+\left (2 c \sqrt {d}+b \sqrt {f}\right ) x}{2 \sqrt {c d+b \sqrt {d} \sqrt {f}+a f} \sqrt {a+b x+c x^2}}\right )}{2 f \sqrt {c d+b \sqrt {d} \sqrt {f}+a f}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.29, size = 194, normalized size = 0.73 \begin {gather*} \frac {\frac {2 \log \left (f \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )\right )}{\sqrt {c}}-d \text {RootSum}\left [b^2 d-a^2 f-4 b \sqrt {c} d \text {$\#$1}+4 c d \text {$\#$1}^2+2 a f \text {$\#$1}^2-f \text {$\#$1}^4\&,\frac {b \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right )-2 \sqrt {c} \log \left (-\sqrt {c} x+\sqrt {a+b x+c x^2}-\text {$\#$1}\right ) \text {$\#$1}}{b \sqrt {c} d-2 c d \text {$\#$1}-a f \text {$\#$1}+f \text {$\#$1}^3}\&\right ]}{2 f} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x^2/(Sqrt[a + b*x + c*x^2]*(d - f*x^2)),x]

[Out]

((2*Log[f*(b + 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)])])/Sqrt[c] - d*RootSum[b^2*d - a^2*f - 4*b*Sqrt[c]*d*#1
 + 4*c*d*#1^2 + 2*a*f*#1^2 - f*#1^4 & , (b*Log[-(Sqrt[c]*x) + Sqrt[a + b*x + c*x^2] - #1] - 2*Sqrt[c]*Log[-(Sq
rt[c]*x) + Sqrt[a + b*x + c*x^2] - #1]*#1)/(b*Sqrt[c]*d - 2*c*d*#1 - a*f*#1 + f*#1^3) & ])/(2*f)

________________________________________________________________________________________

Maple [A]
time = 0.13, size = 399, normalized size = 1.50

method result size
default \(-\frac {\ln \left (\frac {\frac {b}{2}+c x}{\sqrt {c}}+\sqrt {c \,x^{2}+b x +a}\right )}{f \sqrt {c}}-\frac {d \ln \left (\frac {\frac {-2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x +\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (-2 c \sqrt {d f}+b f \right ) \left (x +\frac {\sqrt {d f}}{f}\right )}{f}+\frac {-b \sqrt {d f}+f a +c d}{f}}}{x +\frac {\sqrt {d f}}{f}}\right )}{2 \sqrt {d f}\, f \sqrt {\frac {-b \sqrt {d f}+f a +c d}{f}}}+\frac {d \ln \left (\frac {\frac {2 b \sqrt {d f}+2 f a +2 c d}{f}+\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+2 \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}\, \sqrt {\left (x -\frac {\sqrt {d f}}{f}\right )^{2} c +\frac {\left (2 c \sqrt {d f}+b f \right ) \left (x -\frac {\sqrt {d f}}{f}\right )}{f}+\frac {b \sqrt {d f}+f a +c d}{f}}}{x -\frac {\sqrt {d f}}{f}}\right )}{2 \sqrt {d f}\, f \sqrt {\frac {b \sqrt {d f}+f a +c d}{f}}}\) \(399\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x,method=_RETURNVERBOSE)

[Out]

-1/f*ln((1/2*b+c*x)/c^(1/2)+(c*x^2+b*x+a)^(1/2))/c^(1/2)-1/2*d/(d*f)^(1/2)/f/(1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(1
/2)*ln((2/f*(-b*(d*f)^(1/2)+f*a+c*d)+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+2*(1/f*(-b*(d*f)^(1/2)+f*a+c
*d))^(1/2)*((x+(d*f)^(1/2)/f)^2*c+1/f*(-2*c*(d*f)^(1/2)+b*f)*(x+(d*f)^(1/2)/f)+1/f*(-b*(d*f)^(1/2)+f*a+c*d))^(
1/2))/(x+(d*f)^(1/2)/f))+1/2*d/(d*f)^(1/2)/f/((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*ln((2*(b*(d*f)^(1/2)+f*a+c*d)/f
+(2*c*(d*f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+2*((b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2)*((x-(d*f)^(1/2)/f)^2*c+(2*c*(d*
f)^(1/2)+b*f)/f*(x-(d*f)^(1/2)/f)+(b*(d*f)^(1/2)+f*a+c*d)/f)^(1/2))/(x-(d*f)^(1/2)/f))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(((c*sqrt(4*d*f))/(2*f^2)>0)',
see `assume?

________________________________________________________________________________________

Fricas [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {x^{2}}{- d \sqrt {a + b x + c x^{2}} + f x^{2} \sqrt {a + b x + c x^{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**2/(c*x**2+b*x+a)**(1/2)/(-f*x**2+d),x)

[Out]

-Integral(x**2/(-d*sqrt(a + b*x + c*x**2) + f*x**2*sqrt(a + b*x + c*x**2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^2/(c*x^2+b*x+a)^(1/2)/(-f*x^2+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {x^2}{\left (d-f\,x^2\right )\,\sqrt {c\,x^2+b\,x+a}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^2/((d - f*x^2)*(a + b*x + c*x^2)^(1/2)),x)

[Out]

int(x^2/((d - f*x^2)*(a + b*x + c*x^2)^(1/2)), x)

________________________________________________________________________________________